Crystal structure of paired domain-DNA complex
نویسنده
چکیده
This thesis describes the determination of a paired domainDNA complex crystal structure (involving the paired domain of the Drosophila Prd protein), and discusses the structural basis of DNA binding specificity of the paired domain and the structural basis of Pax developmental mutations. It also describes the cocrystallization of the human PAX6 paired domain-DNA complex. Chapter 1 provides an introduction to paired domains and the Pax family. Pax genes play very important roles for vertebrate development. Mutations in several Pax genes have been associated with mouse and human congenital disorders. The paired domain, a highly conserved DNA-binding domain, is critical for Pax protein function. Chapter 2 describes the purification of Drosophila Prd paired domain, the crystallization of the Prd paired domain-DNA complex, and the determination of the crystal structure of this complex. Chapter 3 describes the structure of the Prd paired domain DNA complex. The crystal structure shows that the paired domain folds as two independent sub-domains, each containing a helical structure that is very similar to the homeodomain. The N-terminal domain makes extensive DNA contacts. It has a novel -turn motif that fits in the minor groove and a HTH unit that contacts the major groove. The -turn makes base specific contacts in the minor groove, and is critical for both DNA binding and for Pax in vivo function. The HTH unit folds like a homeodomain but docks on DNA like repressor. The C-terminal domain of the Prd paired domain does not contact the optimized DNA binding site, and other experiments have shown that it is not required for DNA recognition.
منابع مشابه
An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملCrystal structure of a paired domain-DNA complex at 2.5 å resolution reveals structural basis for pax developmental mutations
The 2.5 A resolution structure of a cocrystal containing the paired domain from the Drosophila paired (prd) protein and a 15 bp site shows structurally independent N-terminal and C-terminal subdomains. Each of these domains contains a helical region resembling the homeodomain and the Hin recombinase. The N-terminal domain makes extensive DNA contacts, using a novel beta turn motif that binds in...
متن کاملOne-dimensional Uranium(VI) Coordination Polymer Complex Containing Dimethyl and Trimethyl Phosphate Ligands: Synthesis, Spectroscopic Characterization, Thermal Analyses, and Crystal Structure
A new one-dimensional uranium(VI) coordination polymer, [UO2(μ-DMP)2(TMP)]n (1) (DMP is dimethyl phosphate and TMP is trimethyl phosphate), was prepared from the reaction of UO2(NO3)2.6H2O and TMP in in THF (THF is tetrahydrofuran) as a solvent. Suitable crystals of this complex for crystal structure determination were obtained by slow evaporation of the produced yellow solution at room tempera...
متن کاملSynthesis, Characterization and Crystal Structure Determination of Copper (II) Complexes with 2,2′-Dimethyl-4,4′-bithiazole
Copper(II) complex [Cu(dmbt)2(H2O)](ClO4)2 (1) was prepared from the reaction of copper(II) perchlorate hexahydrate with 2,2'-dimethyl-4,4'-bithiazole (dmbt) ligand in methanol at ambient temperature. The complex was quantitatively and qualitatively characterized by elemental analysis, absorption and infrared spectrometries. Complex [Cu(DMSO)5](ClO4)2 (2) was also synt...
متن کاملSynthesis, Characterization, and Crystal Structure Determination of a New Copper(II) Complex: [H2en][Cu(pydc)2].2H2O
The new complex of [H2en][Cu(pydc)2].2H2O (1) (where H2en and pydc are ethylenediammonium and 2,6-pyridinedicarboxylate, respectively) was synthesized by the reaction of a mixture of ethylenediamine (en) and 2,6-pyridinedicarboxylic acid (H2pydc) in a mixture of CH3OH/H2O as solvent. This complex was fully characterized by elemental analysis, IR, UV–Vis spectroscopy as well as single-crystal X-...
متن کامل